
An Agile Container-based Approach to TaaS

Pedro Verdugo∗, Joaquı́n Salvachúa†, Gabriel Huecas‡

Grupo de Internet de Nueva Generación, DIT, ETSIT, UPM, Madrid, Spain
∗ Email: pmverdugo@dit.upm.es
† Email: joaquin.salvachua@upm.es
‡ Email: gabriel.huecas@upm.es

Abstract—Current cloud deployment scenarios imply a need
for fast testing of user oriented software in diverse, hetero-
geneous and often unknown hardware and network environ-
ments, making it difficult to ensure optimal or reproducible
in-site testing. The current paper proposes the use of container
based lightweight virtualization with a ready-to-run, just-in-
time deployment strategy in order to minimize time and
resources needed for streamlined multicomponent prototyping
in PaaS systems. To that end, we will study a specific case of
use consisting of providing end users with pre-tested custom
prepackaged and preconfigured software, guaranteeing the
viability of the aforementioned custom software, the syntactical
integrity of the provided deployment system, the availability of
needed dependencies as well as the sanity check of the already
deployed and running software. From an architectural stand-
point, by using standard, common use deployment packages as
Chef or Puppet hosted in parallellizable workloads over ready-
to-run Docker images, we can minimize the time required for
full-deployment multicomponent systems testing and valida-
tion, as well as wrap the commonly provided features via a
user-accessible RESTful API. The proposed infrastructure is
currently available and freely accessible as part of the FIWARE
EU initiative, and is open to third party collaboration and
extension from a FOSS perspective.

1. Introduction

In the last few years the idea of leveraging cloud tech-
nologies for performance and functional testing has been
revisited in numerous occasions, and mostly all authors
concur in the economic, organizational and security-oriented
advantages of a cloud-based testing platform [1], [2], [3],
[4].

In the present paper we will propose our implementation
for one of such functional, goal-oriented cloud-based testing
platform. To begin with, we will define some of the most
prominent terms used along this study, as are the Testing
as a Service and Lightweigth Virtualization paradigms. As
remarked above, there is a current interest and constant
advancements in the cloud testing field, so we will analyze
the most relevant and prominent contributions to our field
of study. Once a global view is attained, we will rationally

detect and categorize the requirements for our own case of
study, modeling a working solution. Then we will detail a
functional implementation of the previously analyzed so-
lution, including full details on the software stacks used
and code links where relevant. Later, a validation of the
presented work will be made available, showing the obtained
data in comparison with similar implementations. Finally, an
objective assessment of the goals attained will be presented,
along with detected improvements and future works.

1.1. Testing as a Service

Traditional Cloud deployment models [5] can be briefly
defined as follow:

- Software as a Service (SaaS): Provides software pack-
ages ready to be deployed in a cloud platform. - Platform as
a Service (PaaS): Provides a prebuilt software environment,
commonly an OS with libraries and optional dependencies.
- Infrastructure as a Service (IaaS): Provides bare metal or
virtualized hardware on demand.

But for our case of study, a recently adopted model [6]
of special interest is that of Testing as a Service (TaaS),
being defined as automated software testing offered via a
cloud-based service.

There are several well known advantages derived from
adopting a TaaS perspective for Cloud testing [1], the most
important of which we can enumerate as follows:

- Scalable testing environment: We can elastically
adapt the number and power of hardware resources to the
testing requirements.

- Cost reduction: By reusing testing environment hard-
ware and resources we can minimize the number of locked
infrastructure usages for a fixed time.

- Utility-based service models: Customize the testing
services to those required by the tenant utilities.

- On-demand testing services: Our testing services can
be fully available all the time.

As illustrated on Harikrishna [3], the usual capabilities
for a TaaS system are organized as follows:

- TaaS process management: Understood as the control
of the testing workflow.

- QoS requirement management: Delimiting the required
parameters for a given QoS target.



- Test environment service: Dedicated to enabling and
offering virtualized environments for testing.

- Testing solution service: Packages of standardized test
models and methods, known as solutions.

- Testing simulation service: Offers capabilities for sim-
ulation of external environments.

- On-demand test service: Provides a continuous execu-
tion environment for tests.

- Tracking and monitor service: Responsible for account-
ing and monitoring of test results and behaviours.

1.2. Lightweight Virtualization

Lightweight virtualization techniques have been studied
for a number of years [7], but have not seen popularity until
the recent coming of the container-based VM [8] system.

This approach proposes the use of the linux kernel
defined namespaces and control groups as VM-like objects,
and presents several advantages related to full-stack virtual-
ization [9], [10]:

- Performance: Comparatively similar to running native
processes, classical VMs need hardware virtualization sup-
port to achieve near results.

- Resource Utilization: The sharing of the same kernel
and modules, as well as optionally memory spaces, allows
for a smaller container footprint as compared to a full VM.

- Functionality: The previously mentioned points allow
for containers to almost completely substitute their common
OS app counterparts, simplifying version updates and man-
agement.

There have been recent concerns with the security of the
container-hosted processes, but at the time of writing the
advances on control group security modules (GRSEC) and
in-memory namespace management seems to have rendered
said concerns obsolete [11].

2. Related Work

The field of cloud automated testing is nowadays mainly
focused on the validation of the external main cloud plat-
form components, as stated with initiatives like Open Cloud
Lab [4]. Also to note, structure proposals like Progress
Cloud Test Framework tend to integrate the corresponding
testing suites in the framework itself [12]. This idea has
lately been partially set aside to allow for more heteroge-
neous test loads, as shown in the FCHTS proposal [13].

From the virtualization standpoint, the main concern
for VM deployment seems to have been with scheduling
strategies [14], but not with the chosen VM technology itself
[15]. An exception can be made for the Kuo proposal [16],
which bases its deployment on the OpenStack framework.
Touching very near our field of interest, the CUTEi testbed
environment [17] proposes a container-based testbed solu-
tion, alas oriented to network simulation issues.

There have also been proposed solutions purporting
intelligent test case generation and adaptation to variable

applications, as is the case with [18], but without an ex-
tended implementation overview it is hard to measure the
performance and success rate of said proposals.

Another promising and currently popular line of work
seems to be the application of these techniques to mobile
device app testing, specifically the Android platform [19]
[20] [21] [16].

3. Case of Study: Definition

Figure 1. Testing Process Steps

To define the applicable uses of our system, we will
begin by detecting and defining usage requirements. In the
FIWARE environment, users are given a choice of base
infrastructures for their cloud deployments, and are also
allowed to customize the aforementioned deployment by
installing prepackaged software. This prepackaged software
is commonly subject to short cycles of development in a
agile development fashion.

The need arises then to constantly test new available
packages as well as new versions and bugfixes of preexisting
packages for all the provided infrastructures.

The system currently under study proposes the automa-
tization of said tests in a fast, resource oriented, on-demand,
always available environment. To reach these objectives,
we will define a main workflow, comprising the previously
shown TaaS capabilities as related to our given scenario.

3.1. Deployment Artifact Validation

We will define a deployment artifact as the set of
instructions and states necessary for the installation and
configuration of a given software package. The main goal
for our system will therefore be to successfully instantiate
a deployment artifact in a given OS environment.

There are several variables to consider that will be of
interest for the monitoring of our deployment, that we will
detail as follows:

- Operating System: Deployment artifacts will have
to be guaranteed to work at least in current Ubuntu and
RedHat/CentOs releases.

- Provisioning Software: Chef, Puppet and optionally
Murano deployment artifacts will have to be supported.



- Dependency Management: All necessary package
dependencies will have to be provisioned and installed.

- Syntax Check: All provided deployment artifacts will
have to comply with the chosen provisioning software syn-
tax.

- Deployment Check: All provided deployment artifacts
will have to complete the deployment process without errors.

- Sanity Check: Optionally, a simple check of the cor-
rect installation and configuration of the software packages
will be executed.

Following the issues presented above, we can tentatively
define the main workflow for our testing process, as illus-
trated in Figure 1.

4. Case of Study: System Implementation

Figure 2. System Components

In order to cover the previously defined use cases, a
reference system architecture has been implemented. Figure
2 gives a simplified overview of the current system structure,
which we will study in detail in the following paragraphs.

With the idea of universal application and libre usage,
our software stack will be exclusively composed of Free
Open Source Software (FOSS), and is fully released under
the Apache License Version 2.0.

4.1. Web UI

The User interface is written on javascript via the Back-
bone.js 1.1.0 framework and can work standalone as a com-
pletely browser based solution. For javascript dependency
management, the usage of Require.js 2.2.0 enables fully
AMD-compliant asynchronous module definition and on-
demand load.

This UI is based on the single-page app pattern, and is
oriented to usage by technical personnel, so the interface
is extremely simplified and designed for a fast, workflow-
oriented user experience. Thanks to the AMD structure and
framework of choice, local and network resource usage are
extremely low.

Figure 3 shows the current state of the Validator UI.

Figure 3. WebUI

4.2. RESTful API

The main component of our system is a RESTful API
based on RESTfulFramework 3.3.3 and hosted in a Django
server version 1.8.3. All code for the API is written for
the Python 2.7.11 interpreter, and is compliant with the
OpenStack style guides and the pep8 standard.

The API is the only external system interface, and is
testable and fully documented in the APIary service.

4.3. Database

The database objects usages and management are
wrapped in Django models, which will have an important
role in the application workflow:

- Storage of available system images.
- Storage of remote software packages repositories and

versions.
- Storage of usage history and monitoring.

4.4. Authentication API

The user authentication and authorization services will
be externally provided by the FIWARE Identity Manager,
an extension from the OpenStack Keystone authorization
framework. A custom Django Authorization Plugin has
been adapted to warrant compliance with the authorization
schema and is available at the application github repository.

4.5. Deployment Service

The image deployment service is based on a Docker
server level 1.23 API, and is responsible for the generation
of images, instantiation of said images in flexible containers
and execution, configuration and monitoring of said contain-
ers. A simple on-demand scheduler has been implemented
as a rational assessment of the observed low number of
concurrent users and jobs.



4.6. Hardware Environment

TABLE 1. HARDWARE ENVIRONMENT

Role CPUs Ram Network OS
API Server 2 2048 1000 Ubuntu 14.04
Deployment Server 4 4096 1000 Ubuntu 14.04
Web Server 2 2048 100 Windows 7 SP1

As seen in Table 1, the hardware requirements for our
implementation are quite low. The separation of functional-
ities in different machines can be avoided when full inte-
gration is required, as is the case with the validation mea-
surement infrastructure illustrated in the following section.

5. Case of Study: Metrics and Validation

TABLE 2. IMAGE CATALOG

OS Version Provisioner Generation (s) Deployment (s)
Ubuntu 12.04 Chef 1582 2
Ubuntu 14.04 Chef 1800 4
CentOs 6 Chef 1201 1
CentOs 7 Chef 1404 2
Ubuntu 12.04 Puppet 1209 2
Ubuntu 14.04 Puppet 1383 3
CentOs 6 Puppet 796 1
CentOs 7 Puppet 995 1

In this section we will define several metrics to enable
a comparison with alternative deployment techniques.

To begin with, Table 2 shows the OS and provisioning
engine currently supported by our system, along with the
mean times for 3 runs of image generation and deployment
to achieve results with a standard deviation under 10The
image generation process is based on the github provided
dockerfiles, and includes software updating and installation
of the chosen provisioning environment. As we can observe,
Ubuntu 14.04 is the bulkiest OS to install, centos6 being
the lightest. As for provisioning systems, the download
of ChefDK during the generation process is quite costly,
mainly compared to the usage of system-provided Puppet-
client packages. A special mention can be made about
the very fast image deployment times, negligible in all cases.

The main concern with our system performance will be
determined by the obtained speedup relative to preexisting
virtualization systems. To the end of measuring this relative
performance, we will test our system by running deployment
tests for all the 47 available software packages in FIWARE-
Lab.

We will define the observed times as follows:
- td: Elapsed time until software dependencies are in-

stalled.
- ts: Elapsed time until deployment system syntax is

checked.
- tD: Elapsed time until software is deployed.

- tT : Total system deployment time.

s =

√√√√ 1

N − 1

N∑
i=1

(xi − x)2 (1)

All given times are obtained by calculating the mean of
5 consecutive deployments, obtaining a standard deviation
of the results under 10% (x with N=5 in the well-known
formula for standard deviation given in equation 1) and
supposing all times following a normal distribution, with the
API and virtualization engine running in the same physical
host machine and with hardware characteristics similar to
those of the previously mentioned Deployment Server.

The performance tests will run over a pre-deployed
system VM, as the image generation times are previously
detailed and expected to be constant, and will include several
deployment strategies:

- Local OpenStack Nova-based KVM machine.
- Local Vagrant-provisioned VirtualBox machine.
- Local Docker-based container.
As illustrated in Table 3, we can notice a considerable

speedup by moving to lightweight virtualization environ-
ments. Dependency install times, have been observed to be
the most variable factor in the total deployment time, mainly
due to the random delay introduced by network usage, but
are vastly exceeded by the i/o writes incurred during the
main deployment phase. The multilayered, network-oriented
infrastructure of OpenStack seem to be the reason for the
slow response times obtained, which is totally avoidable in
a single machine environment, but nonetheless serves as a
representative picture of a real world scenario.

A graphic comparison of the mean times for all deploy-
ments is given in Figure 4, where we can finally extract
visual conclusions from our experiment, namely that a mean
of a 34.87% speed gain can be achieved by using container
based virtualization as opposed to OpenStack-based VMs in
test deployment environments. For local VirtualBox deploy-
ments, this number is reduced to a mean of 26.22%, also
significant in the authors’ opinion.

6. Conclusions and Future Work

Foremost, the authors would like to note that all sources
for the presented software infrastructure are hosted via an
open access github repository at http://www.github.org/ging/
fiware-validator, available for free usage, peer review and
collaboration.

6.1. Summary

In the opinion of the authors, the system as presented
covers sufficiently the initial fixed requirements. A brief
validation of the main system characteristics can be sum-
marized in the following list:

- TaaS process management: The testing workflow pro-
cess is unified in a single component.

- QoS requirement management: The system covers the
QoS requirements for the currently given workloads.



TABLE 3. RUNTIMES FOR AVAILABLE FIWARE-LAB DEPLOYMENTS

Virtualization Engine (values in seconds)
Software under Test KVM VirtualBox Docker
td ts tD tT td ts tD tT td ts tD tT
2D3DCapture 753 320 4772 5845 467 221 4327 5015 330 166 2663 3159
2d ui 45 24 349 418 49 23 375 447 33 16 259 308
EspR4FastData 79 51 867 997 123 49 966 1138 76 31 651 758
GIS 425 163 3359 3947 407 202 3420 4029 258 144 2598 3000
IoTBroker 148 92 1608 1848 172 91 1410 1673 114 62 1035 1211
MRCoAP 41 25 366 432 40 19 331 390 37 16 283 336
RealVirtualInteractionGE 322 152 2873 3347 345 165 2476 2986 252 127 2267 2646
Stream oriented kurento 372 199 3691 4262 374 232 3381 3987 337 171 3003 3511
augmentedreality 50 29 449 528 63 35 518 616 37 23 424 484
beatest 386 206 3253 3845 399 213 3504 4116 294 165 2574 3033
cdvideoanalysis 83 47 668 798 71 31 534 636 43 30 420 493
cepheus 571 363 5384 6318 538 297 4610 5445 380 160 3125 3665
ckan 278 125 2530 2933 247 137 2289 2673 198 107 1725 2030
cloud portal 607 231 4494 5332 440 233 4017 4690 448 207 3517 4172
cloud rendering 191 103 1754 2048 196 117 1701 2014 135 69 1200 1404
content-based-security 456 220 3920 4596 456 236 4148 4840 295 189 3100 3584
cosmos 383 186 3305 3874 435 221 3216 3872 249 136 2584 2969
flod-enabler 157 72 1289 1518 151 97 1259 1507 161 76 1301 1538
interface designer 50 22 337 409 37 16 273 326 33 14 293 340
iotDiscovery 101 54 891 1046 80 33 672 785 55 27 568 650
keyrock 315 153 2713 3181 279 133 2284 2696 213 110 1892 2215
kiara 64 31 544 639 58 26 482 566 38 17 346 401
kurento 418 199 3530 4147 367 225 3713 4305 309 143 2619 3071
lightweightsematiccomposition 182 89 1517 1788 185 78 1281 1544 128 55 1068 1251
mahout 34 22 281 337 33 22 336 391 32 12 256 300
marketplace-ri 415 233 3903 4551 682 274 5208 6164 557 183 3492 4232
me-querybroker 55 28 473 556 62 22 424 508 31 19 314 364
metadatapreproc 79 42 716 837 56 30 564 650 57 33 563 653
orion 169 86 1460 1715 182 113 1746 2041 152 54 1234 1440
orion-dbcluster 272 151 2304 2727 156 73 1404 1633 151 82 1486 1719
poi dp 90 51 836 977 99 40 736 875 81 34 712 827
prrs 515 309 4370 5194 420 228 4539 5187 413 248 3627 4288
registry-ri 175 75 1338 1588 126 56 1196 1378 91 51 982 1124
repository-ri 433 235 3883 4551 406 192 3228 3826 392 157 2657 3206
rpcdds 33 18 304 355 33 15 277 325 30 19 282 331
semanticas 592 287 4465 5344 508 261 4328 5097 353 157 3190 3700
sls 622 271 4215 5108 461 235 4170 4866 398 185 3181 3764
sls-securityprobe 509 226 4037 4772 315 162 3204 3681 354 173 3016 3543
sopeco 164 66 1224 1454 172 87 1399 1658 127 74 1253 1454
spagobi 363 200 3495 4058 405 176 3421 4002 373 187 3160 3720
synch-fives 603 260 4843 5706 574 246 4563 5383 415 234 3728 4377
synchronization 74 46 699 819 64 31 523 618 62 28 473 563
virtualcharacters 56 28 445 529 48 26 425 499 33 15 269 317
webtundra 81 35 670 786 54 27 440 521 42 23 358 423
wilma 165 86 1540 1791 115 56 1019 1190 129 55 1053 1237
wirecloud 224 119 2271 2614 185 98 1881 2164 213 92 1570 1875
wstore 315 204 3210 3729 392 204 3217 3813 365 143 2665 3173
xml3d 366 240 3379 3985 309 168 2715 3192 180 117 1880 2177

- Test environment service: The lightweight virtualized
environments implemented as Docker images are available
on-the-fly for immediate deployment.

- Testing solution service: Given the context of de-
ployment artifact testing, the system implements the most
common provisioning solutions usages.

- Testing simulation service: The simulation of testing
environments is limited by the availability of Docker con-
tainers, but sufficiently covers the presented workloads.

- On-demand test service: The system depends on a min-
imal number of external services and is constantly available
for usage.

- Tracking and monitor service: The unification of data

collection in a single database simplifies the tracking and
monitoring of system usages.

6.2. Future Work

To fully cover the previously listed TaaS capabilities,
the system as presented can be significantly improved in
the following fields:

- Increase the available variables for external environ-
ments simulation.

- Increase the number of standard testing solutions sup-
ported.



td ts tD tT
0

5

10

15

20

25

30

35

40
D

oc
ke

rR
el

at
iv

e
Ti

m
es

(%
)

KVM
VirtualBox

Figure 4. Runtimes Comparison

7. Acknowledgements

The current work is partially founded by the FIWARE
(https://www.fiware.org/) European Union ICT FP7 package
(http://cordis.europa.eu/fp7/ict/)

References

[1] W. Jun and F. Meng, “Software Testing Based on Cloud Computing,”
in 2011 International Conference on Internet Computing Information
Services (ICICIS), Sep. 2011, pp. 176–178.

[2] P. Zhenlong, O. Y. Zhonghui, and H. Youlan, “The Application and
Development of Software Testing in Cloud Computing Environment,”
in 2012 International Conference on Computer Science Service Sys-
tem (CSSS), Aug. 2012, pp. 450–454.

[3] P. Harikrishna and A. Amuthan, “A survey of testing as a service
in cloud computing,” in 2016 International Conference on Computer
Communication and Informatics (ICCCI), Jan. 2016, pp. 1–5.

[4] C. J. Li and H. J. Shih, “A cloud testing platform and its methods
based on essential cloud characteristics,” in 2015 International Con-
ference on Machine Learning and Cybernetics (ICMLC), vol. 1, Jul.
2015, pp. 163–169.

[5] F. Liu, J. Tong, J. Mao, R. Bohn, J. Messina, L. Badger, and D. Leaf,
“NIST cloud computing reference architecture,” NIST special
publication, vol. 500, no. 2011, p. 292, 2011. [Online]. Available:
http://www.disa-apps.com/Services/DoD-Cloud-Broker/∼/media/
Files/DISA/Services/Cloud-Broker/nist-cloud-ref-architecture.pdf

[6] J. Gao, X. Bai, W. T. Tsai, and T. Uehara, “Testing as a Service (TaaS)
on Clouds,” in 2013 IEEE 7th International Symposium on Service
Oriented System Engineering (SOSE), Mar. 2013, pp. 212–223.

[7] S. J. Vaughan-nichols, “New Approach to Virtualization Is a
Lightweight,” Computer, vol. 39, no. 11, pp. 12–14, Nov. 2006.

[8] C. Pahl, “Containerization and the PaaS Cloud,” IEEE Cloud Com-
puting, vol. 2, no. 3, pp. 24–31, May 2015.

[9] R. Morabito, J. Kjällman, and M. Komu, “Hypervisors vs.
Lightweight Virtualization: A Performance Comparison,” in 2015
IEEE International Conference on Cloud Engineering (IC2E), Mar.
2015, pp. 386–393.

[10] A. Sonone, A. Soni, S. Nathan, and U. Bellur, “On Exploiting
Page Sharing in a Virtualised Environment - An Empirical Study
of Virtualization Versus Lightweight Containers,” in 2015 IEEE 8th
International Conference on Cloud Computing, Jun. 2015, pp. 49–56.

[11] J. C. Wang, W. F. Cheng, H. C. Chen, and H. L. Chien, “Benefit of
construct information security environment based on lightweight vir-
tualization technology,” in 2015 International Carnahan Conference
on Security Technology (ICCST), Sep. 2015, pp. 1–4.

[12] G. N. Iyer, J. Pasimuthu, and R. Loganathan, “PCTF: An Integrated,
Extensible Cloud Test Framework for Testing Cloud Platforms and
Applications,” in 2013 13th International Conference on Quality
Software, Jul. 2013, pp. 135–138.

[13] S. J. Hsieh, S. M. Yuan, G. H. Luo, and H. W. Chen, “A flexible
public cloud based testing service for heterogeneous testing targets,”
in Network Operations and Management Symposium (APNOMS),
2014 16th Asia-Pacific, Sep. 2014, pp. 1–3.

[14] Y. H. Tung, C. C. Lin, and H. L. Shan, “Test as a Service: A
Framework for Web Security TaaS Service in Cloud Environment,” in
2014 IEEE 8th International Symposium on Service Oriented System
Engineering (SOSE), Apr. 2014, pp. 212–217.

[15] Y. Zheng, L. Cai, S. Huang, and Z. Wang, “VM scheduling strate-
gies based on artificial intelligence in Cloud Testing,” in 2014 15th
IEEE/ACIS International Conference on Software Engineering, Ar-
tificial Intelligence, Networking and Parallel/Distributed Computing
(SNPD), Jun. 2014, pp. 1–7.

[16] J. Y. Kuo, C. H. Liu, and W. T. Yu, “The Study of Cloud-Based Test-
ing Platform for Android,” in 2015 IEEE International Conference
on Mobile Services, Jun. 2015, pp. 197–201.

[17] H. Asaeda, R. Li, and N. Choi, “Container-based unified testbed for
information-centric networking,” IEEE Network, vol. 28, no. 6, pp.
60–66, Nov. 2014.

[18] R. Nasiri and S. Hosseini, “A case study for a novel framework for
cloud testing,” in 2014 11th International Conference on Electronics,
Computer and Computation (ICECCO), Sep. 2014, pp. 1–5.

[19] A. Malini, N. Venkatesh, K. Sundarakantham, and S. Mercyshalinie,
“Mobile application testing on smart devices using MTAAS frame-
work in cloud,” in 2014 International Conference on Computer and
Communications Technologies (ICCCT), Dec. 2014, pp. 1–5.

[20] L. Murugesan and P. Balasubramanian, “Cloud based mobile appli-
cation testing,” in 2014 IEEE/ACIS 13th International Conference on
Computer and Information Science (ICIS), Jun. 2014, pp. 287–289.

[21] C. M. Prathibhan, A. Malini, N. Venkatesh, and K. Sundarakantham,
“An automated testing framework for testing Android mobile appli-
cations in the cloud,” in 2014 International Conference on Advanced
Communication Control and Computing Technologies (ICACCCT),
May 2014, pp. 1216–1219.


